Improving Parallel I/O for Scientific Applications on Jaguar

Weikuan Yu, Jeffrey Vetter November 28, 2007

Outline

- Overview of Jaguar and its I/O Subsystem
- Characterization, profiling and tuning
 - Parallel I/O
 - Storage Orchestration
 - Server-based client I/O statistics in Lustre file system
- Optimize parallel I/O over Jaguar
 - OPAL: Opportunistic and Adaptive MPI-IO library over Lustre
 - Arbitrary striping pattern per MPI File; stripe aligned I/O accesses
 - Direct I/O and Lockless I/O
 - Hierarchical Striping
 - Partitioned Collective I/O
- Conclusion & Future Work

Parallel I/O in Scientific Applications on Jaguar

- Earlier analysis of scientific codes running at ORNL/LCF
 - Seldom make use of MPI-IO
 - Little use of high-level I/O middleware: NetCDF or HDF5 ...
 - Large variance in the performance of parallel I/O using different software stacks
- Current scenarios faced for scientific codes
 - Application-specific I/O tuning and optimization, such as decomposition, aggregation, and buffering
 - Direct use of POSIX I/O interface, hoping the best from file systems
- Our Effort:
 - Obtain a good understanding of the parallel I/O behavior on Jaguar
 - Promote the use of I/O library, e.g. MPI-IO
 - Provide an open-source and feature-rich MPI-IO implementation

ORNL Jaguar I/O Subsystem

- Storage (DDN 9550)
 - 18 racks, each of 36 TB; Fibre Channel (FC) links.
 - Each LUN (2TB) spans two tiers of disks
- Three Lustre file systems
 - Each with its own MDS;
 - Two with 72 OSTs, each of 150TB; One with 144 OSTs, 300 TB
 - 72 service nodes for OSSs, each supporting 4 OSTs

Parallel I/O over Jaguar

- Storage to Application, efficiency degradation
- End-to-End IO performance
 - Dependent on mid-layer components:
 - Lustre file system
 - Parallel IO libraries

Characterization Parallel I/O

- Independent and Contiguous Read/Write
 - Share file
 - Separated files
- Non-contiguous I/O
 - Data-sieving
 - Collective I/O
- Parallel Open/Create
- Orchestrated I/O Accesses over Jaguar

Independent & Contiguous I/O

- Independent & contiguous I/O scales well unless too many clients are contending for the same servers (over-provisioned)
- Write scales better with increasing number of processes
- Read scales better with very large striping width

Small and Noncontiguous I/O

- Small and Noncontiguous I/O results in lower performance
- Strong scaling makes the problem even worse
- Data sieving from individual processes helps only read, but not write due to increased lock connections
- Collective I/O is able to help on this by aggregating I/O and eliminating lock contentions

Parallel Open/Create

- Use a shared MPI file for scalable parallel Open/Create
- Select the first OST dynamically for scalable parallel creation

Orchestrated File Distribution

LUN/OST Organization of DDN Storage Couplet

Impact of File Distribution with a Couplet

Impact of File Distribution for S3D

Flash IO Tuning

- Collective I/O significantly improves the I/O performance of Flash I/O
- For small block size, choose a smaller number of aggregators for Flash I/O

Using a Shared MPI File For S3D

- Using separated files, S3D does not scale up to 8K processes due to file creation cost
- Using a shared MPI file for S3D can reduce file creation cost
- More convenient in managing much fewer number of files

Profiling through Server-based Client I/O Statistics in Lustre

- Lustre Client Statistics
 - /proc/fs/lustre/*/*/exports
 - Per-exp client statistics is not sufficient
 - liblustre clients are transient
 - Provided per-nid client statistics
 - Integrated into Lustre source release
- Benefits
 - In-depth tracing of aggressive usage
 - Fine-grained I/O profiling
 - Knobs for future I/O service control

Parallel I/O Instrumentation & Optimization

- Overview of Jaguar and its I/O Subsystem
- Characterization, Profiling and Tuning
 - Parallel I/O
 - Storage Orchestration
 - Server-based client I/O statistics in Lustre file system
- Optimize Parallel I/O over Jaguar
 - OPAL: Opportunistic and Adaptive MPI-IO library over Lustre
 - Arbitrary striping pattern per MPI File; stripe aligned I/O accesses
 - Direct I/O and Lockless I/O
 - Hierarchical Striping
 - Partitioned Collective I/O
- Conclusion & Future Work

Parallel I/O Stack on Jaguar

- Parallel I/O Stack
 - MPI-IO, NetCDF, HDF5
 - Using MPI-IO as a basic building component
 - Default Implementation from Cray
 - With components named AD_Sysio over sysio & liblustre
- Lack of an open-source MPI-IO implementation
 - Proprietary code base; Prolonged phase of bug fixes
 - Stagnant code development w.r.t Lustre file system features
 - Lack of latitudes for examination of internal MPI-IO implementation
 - Lack of freedom for other developers in experimenting optimizations

OPAL

- OPportunistic and Adaptive MPI-IO Library
- An MPI-IO package optimized for Lustre
- Featuring
 - Dual-Platform (Cray XT and Linux); unified code
 - Open source, better performance
 - Improved data-sieving implementation
 - Arbitrary striping specification over Cray XT
 - Lustre stripe-aligned file domain partitioning
 - Direct I/O, Lockess I/O, and more ...
- Opportunities
 - Parallel I/O profiling and tuning
 - A code base for patches and optimizations
- http://ft.ornl.gov/projects/io/#download

Diagram of OPAL over Jaguar

Independent Read/Write

- IOR Read/Write
 - Block size 512MB, transfer size 4MB
 - Read from or write to a shared file, 64 stripes wide

Scientific Benchmarks – Results

MPI-Tile-IO

NAS BT-IO

Flash I/O

Direct I/O and Lockless I/O

- Direct I/O
 - Perform I/O without file system buffering at the clients
 - Need to be page-aligned
- Lockless I/O
 - Client I/O without acquiring file system locks
 - Beneficial for small and non-contiguous I/O
 - Beneficial for clients with I/O to the same stripes
- Recently implemented in OPAL for Lustre platforms
 - Works over Linux cluster and Cray XT (CNL)
 - Performance improvement for large streaming I/O on a Linux cluster
 - Benefits over Jaguar/CNL is yet to be determined

Hierarchical Striping

- An revised implementation of MPI-I/O with subfiles (CCGrid'2007)
 - Break Lustre 160-stripe limitation
 - Avoid over-provisioning problem
 - Mitigate the impact of striping overhead
- Data Layout: hierarchical striping
 - Create another level of striping pattern for subfiles
 - Allow maximum coverage of Lustre storage targets

Global Synchronization in Collective I/O on Cray XT

- Collective IO has low performance on Jaguar?
 - Much time is spent on global synchronization
 - Application scientists are forced to aggregate I/O into smaller sub-communicators

Partitioned Collective I/O

Prototyped in an open-source MPI-IO library

- Divide processes into smaller groups:
 - Reduced global synchronization
 - Still benefit from IO aggregation
- Improves collective IO for different MPI benchmarks Benefits to MPI-Tile-IO and Flash IO

Flash IO with ParColl

20000

Conclusion & Future Work

- Characterized I/O Performance over Jaguar
- Tuned and optimized various I/O Patterns
- To make OPAL a public software release
- To model and predict application I/O performance
- A pointer again:
 - http://ft.ornl.gov/project/io/

